Steel application in construction
Prof. Dr.-Ing. Dieter Ungermann
Steel application in construction

1. Examples
2. Steel market in construction
3. Research topics
4. Summary
1. Examples

Steel enables ambitious infrastructure
Viaduc de Millau (France)

- Multi Cable-Stayed Bridge
- Length: 2460 m
- Steel superstructure: orthotropic box deck of 27.75 m width and maximum height of 4.20 m
- Total height: 343 m
Steel enables ambitious infrastructure
Viaduc de Millau (France)

- Pylons and decks are welded constructions
1. Examples

Steel enables ambitious infrastructure
Viaduc de Millau (France)

Thermo-mechanical treatment in rolling process of steel S460 ensures uncomplicated weld procedures

- Deck: S355 23,500 t
 S460 12,500 t
- Pylon: S355 3,200 t
 S460 1,400 t
- Stay cable: 1,500 t
1. Examples

Steel designs urban environment
Railway Station Liege (Belgium)

- Roof made of Steel and glass
- Length: 200 m
- Height: 35 m
- 39 Steel arches (span 157 m)
- Weight 11,000 t
1. Examples

Steel assures modern building concepts
Commerzbank Tower Frankfurt

- Height: 258 m
- 18,800 t Stahl
- Total weight: 200,000 t
- Steel grades: S355 J2G3 / S355 M
 S460 N /S460 M
1. Examples

Steel assures modern building concepts
Commerzbank Tower Frankfurt

Steel-concrete-composite solutions with high bearing capacity and high fire resistance
1. Examples

Steel is hidden in many buildings
High bay racking systems

- Storage of goods on pallets
- Usual dimensions: $l/w/h = 150m/60m/40m$
- Storage positions: >25,000 pallets
- Operation by automatic storage and retrieval machines
1. Examples

Steel is hidden in many buildings

High bay racking systems

- Silo design: Building envelope is carried by the high bay racking system
- Steel consumption of the manufacturers organised in the German national association of storage and plant equipment: 400,000 t p.a.

Source: SSI Schäfer
1. Examples

High bay racking systems
Steel consumption of a high bay racking system

Example:
- Dimensions: l/w/h = 155m/120m/40m
- Column profiles: ca. 190 km length (ca. 70,000 m² plate)
- Pallet beams: ca. 650 km length (ca. 95,000 m² plate)
- Diagonal: ca. 800 km length (ca. 108,000 m² plate)
- Screws: ca. 1,900,000 pieces
- Cladding roof/wall: 18.600m²/22.000m²
1. Examples

Steel is the governing material for industrial buildings

market share
~ 80 %
1. Examples

Steel is a long life product and allows for modification

Müngstener railway bridge

- Construction time 1893 - 1897
- Main dimensions:
 - L = 465 m
 - H = 110 m above valley floor
 - W = 9 m (superstructure)
 - W = 25.7 m (arch base)
- Cast Steel (bearing etc.): ~240 t
- Mield steel (plates & sections): ~4.700 t
- Rivets: ~950.000 pieces
1. Examples

Steel is a long life product and allows for modification

Müngstener railway bridge
Steel is a long life product and allows for modification
Müngstener railway bridge
1. Examples

Steel is durable and documents civil engineering construction history
Rhine railway bridge Waldshut Koblenz (Germany – Switzerland)

- Construction time: 1858 - 1859
- Span: $L = 38.13 / 54.87 / 38.13$ m (total length: 130 m)
Steel application in construction

1. Examples

2. Steel market in construction
 - Construction requirements
 - Steel consumption
 - Steel grades
 - Production steel construction

3. Research topics

4. Summary
2. Steel market in construction

Construction requirements

● **Strengths**
 - Rapid construction
 - High level of Prefabrication
 - Great choice of steel products, profiles, cladding types and attachments
 - Long spans – flexibility in long-term use
 - Architectural image
 - High quality of material and construction

● **Weaknesses**
 - Fire protection
 - Costs compared to other construction materials

● **Opportunities**
 - Sustainability, recyclability

Results of questionnaire in Europe

Importance of various construction
2. Steel market in construction

Steel consumption

- long products
 - wire
 - suspension elements
 - bolts M12-M36
- profiles
 - warm
 - cold
 - > 0,5mm;
 - < 6,0mm
 - > 6,0mm;
 - < 150mm
- flat products
 - plates
- industrial buildings
- commercial buildings
- facade panels
- secondary struct. Elements
- rack structures
- bridges
- wind towers
Steel market in construction

Steel grades

- **EN 10025**
 - S235
 - S355
 - S460
 - S690

- **EN 10346**
 - S350 GD
 - HX460LAD

- **Bolt material**
 - 4.6
 - 5.6
 - 8.8
 - 10.9

Mechanical properties

- DIN EN ISO 898
Production steel construction in Germany

2. Steel market in construction

Steel application in construction │ Prof. Dr.-Ing. Dieter Ungermann │ METEC and 2nd ESTAD 2015
Production steel construction in Germany

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>industrial buildings</td>
<td>742</td>
<td>743</td>
<td>680</td>
<td>603</td>
<td>641</td>
<td>604</td>
<td>-5,7</td>
<td>600</td>
</tr>
<tr>
<td>plant engineering</td>
<td>218</td>
<td>176</td>
<td>241</td>
<td>233</td>
<td>226</td>
<td>208</td>
<td>-7,9</td>
<td>230</td>
</tr>
<tr>
<td>commercial buildings</td>
<td>85</td>
<td>85</td>
<td>97</td>
<td>106</td>
<td>89</td>
<td>95</td>
<td>7,0</td>
<td>80</td>
</tr>
<tr>
<td>towers and masts</td>
<td>540</td>
<td>592</td>
<td>743</td>
<td>779</td>
<td>724</td>
<td>686</td>
<td>-5,2</td>
<td>700</td>
</tr>
<tr>
<td>bridges</td>
<td>55</td>
<td>53</td>
<td>56</td>
<td>56</td>
<td>66</td>
<td>79</td>
<td>18,4</td>
<td>70</td>
</tr>
<tr>
<td>hydraulic engineering</td>
<td>18</td>
<td>17</td>
<td>23</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>2,2</td>
<td>25</td>
</tr>
<tr>
<td>any other application</td>
<td>334</td>
<td>473</td>
<td>609</td>
<td>507</td>
<td>383</td>
<td>372</td>
<td>-3,0</td>
<td>425</td>
</tr>
<tr>
<td>sum steel construction</td>
<td>1.992</td>
<td>2.139</td>
<td>2.449</td>
<td>2.308</td>
<td>2.153</td>
<td>2.068</td>
<td>-3,9</td>
<td>2.130</td>
</tr>
</tbody>
</table>
Steel application in construction

1. Examples

2. Steel market in construction

3. Research topics
 - Sustainability, Recyclability
 - Durability
 - Construction
 - Fabrication

4. Summary
3. Research topics - Sustainability

Sustainability

- efficient use of materials
- low wastage of materials
- low life cycle costs
- re-use of components

➢ steel is construction material with highest level of sustainability

→ chance to enhance market share

Results of questionnaire in Europe

perceived level of sustainability of different materials
3. Research topics - Recyclability

Sustainability, Recyclability

- Steel is recyclable on different levels

- **Material**
 - scrap metal
 - mill: 88% new steel products
 - storage: 11%
 - re-use

- **Profiles**
 - disassembly of construction
 - new building

- **Buildings**
 - change in use and / or enlargement

Growing Sustainability
3. Research topics - Sustainability

Sustainability of steel in the construction sector (NASTA)

<table>
<thead>
<tr>
<th>Research Topic</th>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated and sustainable slab systems in steel and composite construction</td>
<td>€ 937,300.00</td>
<td></td>
</tr>
<tr>
<td>Multidimensional energy enhanced claddings in steel-lightweight construction for industrial buildings</td>
<td>€ 1,146,400.00</td>
<td></td>
</tr>
<tr>
<td>Sustainable office buildings in steel and composite construction - Development of design aids</td>
<td>€ 1,306,050.00</td>
<td></td>
</tr>
<tr>
<td>Building in existing contexts and structures – potentials of lightweight buildings in steel</td>
<td>€ 953,525.00</td>
<td></td>
</tr>
<tr>
<td>Holistic assessment of steel and composite bridges according to criteria of sustainability</td>
<td>€ 878,300.00</td>
<td></td>
</tr>
<tr>
<td>Development of assessment criteria for the sustainability of steel structures of renewable power plants with exemplary appliance</td>
<td>€ 809,287.00</td>
<td></td>
</tr>
</tbody>
</table>
Steel application in construction

1. Examples

2. Steel market in construction

3. Research topics
 - Sustainability, Recyclability
 - Durability
 - Construction
 - Fabrication

4. Summary
3. Research topics - Durability

Bridges in Germany – some facts about the condition

- Bridges of Germany’s local authorities: Grading of condition (1,0 … 4,0)
- 15% of bridges should be replaced in short-term

Enhancement of market share through reduction of lifetime costs

Choice of materials

Federal and state authorities

- Prestressed concrete 70%
- Other 1%
- Composite structure 6%
- Steel 6%
- Other concrete 17%

Local authorities

- Prestressed concrete 16%
- Other 2%
- Timber 3%
- Stone 8%
- Composite structure 8%
- Steel 8%
- Other concrete 55%

Source: Difu study 2013

Maintenance / repair of damages

Causes for damages

- by design
- cracks
- corrosion
- moisture penetration
- other

Source: Difu study 2013
3. Research topics - Durability

Hot-dip galvanizing in bridge construction

Periods of corrosion protection:

- Organic coating (repair needed during lifetime)
 - 25…33
 - 50…66
 - 75…100

- Hot-dip galvanization (lifelong protection)
 - > 80 years

Service life of bridges
- = 100 years

Service life of bridges
- = 100 years
3. Research topics - Durability

Fatigue resistance of hot-dip galvanized steel (S355JR+AR, S355J2+N, S460M, S700MC)

- Cyclic loads lead to fatigue failure
- Zinc layer reduces fatigue resistance
- Influence was examined and is manageable
- Steel bridges get more economical and sustainable

- Incipient crack, which did not lead to failure of the specimen
- Second incipient crack, which also has grown into the base material

Cyclic loads lead to fatigue failure
- Zinc layer reduces fatigue resistance
- Influence was examined and is manageable
- Steel bridges get more economical and sustainable

Initial state

Cracks "jump over", under cyclic loads

Fe

shrinkage cracks in zinc layer

increased stress in base material

- Micro cracks in δ₁ phase (already existent in initial state, immediately after galvanizing process)
Steel application in construction

1. Examples

2. Steel market in construction

3. Research topics
 - Sustainability, Recyclability
 - Durability
 - Construction
 - Fabrication

4. Summary
3. Research topics - Construction

Integral composite bridges

- avoidance of maintenance intensive bearings and dilatation joint
- efficient shear connection between steel and concrete with steel anchor grip
3. Research topics - Construction

Steel-concrete composite structures

- connection of advantages of both materials “steel and concrete”
 - high bearing capacity
 - minimum material use
 - economic fabrication

selection of VFT-WiB-types

thermal cut of anchor grip

anchor grip with reinforcement
Steel application in construction

1. Examples

2. Steel market in construction

3. Research topics
 - Sustainability, Recyclability
 - Durability
 - Construction
 - Fabrication

4. Summary
Laserwelded Steel Hollow Plates

- light weight – efficient fabricated structure
- investigated applications:
 - deck plates in steel bridge constructions:
 - bridge construction analogue to orthotropic steel deck:
 - wheel loads are transferred from deck plate to secondary girders and from secondary girders to main girders
 - hollow plate functions as top flange of the main girders
 - decks in RORO ships or ferry boats:

main deck with common HP cross sections
3. Research topics - Fabrication

Laserwelded Steel Hollow Plates

- construction:
 - upper deck plate
 - lower deck plate
 - web plates

- closed low-weight steel construction
- composed of two deck plates and intermediate webs
- webs can be steel plates or sections
- two-dimensional load transfer of single loads (e.g. wheel loads)

→ optimal design principle
3. Research topics - Fabrication

Laserwelded Steel Hollow Plates

- fabrication:

 I-Core Panel at Meyerwerft:
 stake weld at upper and lower deck plate:

 Fabrication of a hollow plate at Meyerwerft Papenburg

- connection of deck plates and web with laser stake welds:
 - deck and web plate are welded through the deck plate
 - deck plate of up to 10 mm thickness can be processed
 - automatized process with high accuracy
 - high speed welding with minimal heat impact
 - less straightening

 → economically efficient fabrication
Steel application in construction

1. Examples
2. Steel market in construction
3. Research topics
4. Summary
Steel is in strong competition with alternative construction materials, i.e. concrete

- Enhancement of market share is possible through
 - Efficient use of materials
 - Innovative design concepts
 - Mechanizing of fabrication
 - Development of more durable constructions
 - Working out the advantage in sustainability and life cycle costs